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ABSTRACT 

In this study, a new model has been proposed based on the Rama distribution for modeling real-life data. The proposed model is known 

as Alpha Power Transformed Rama distribution. The Alpha Power Transformed model developed by Mahdavi and Kundu was used to 

generate the new two-parameter lifetime model. The survival function, failure rate and some statistical properties of the model are also 

discussed. The maximum likelihood estimation is employed for the parameter estimation of the model. The model is validated using 

lifetime data-sets and are compared to exponential, Erlang Truncated Exponential and Length Biased Power Lindley distribution and 

was found that the model provides a close fit than other competing models. 

Index Terms – Alpha Power Transformation, Rama Distribution, Reliability Analysis, Moments, Entropies, Maximum Likelihood 

Estimation. 

1. INTRODUCTION 

Statistics is a tool by which we can draw inferences about random phenomena. Statistics is the scientific study of numerical data 

based on natural phenomena i.e. data is based on the naturally occurring events not created by the imagination. Nowadays, Statistics 

gain its importance because of the characteristic of its wide range of applicability in modeling data. There may be hardly any rare 

field where statistics has not being used. Different experimental studies result in new type of data sets and problems for which 

there is a need of an adequate and flexible distribution for modeling purposes. There are many existing models in the literature to 

fit the real data sets, but they may not be sufficient to express the behavior of statistical data sets. To overcome the deficiency of 

the existing models, there is a need of developing new families of probability distributions. The generalizations of existing models 

can provide more flexibility in modeling such types of data sets. 

2. RELATED WORK 

Shanker [2] introduced the Rama distribution is a parametric model that is used for modeling real-life data sets. The model has the 

following pdf and cdf with parameter θ. 
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Rama distribution is a mixed distribution consisting of an exponential distribution with one parameter (θ) and a gamma (4,θ) 

distribution. The author also discussed the properties of the model. Maximum Likelihood Estimation has been established for 

parameter estimation.  In many statistical investigations interest lies in conducting lifetime data analysis. The modeling lifetime 

data analysis depends heavily on the behaviour of the hazard rate. Many lifetime models have monotone hazard rates while some 

are non-monotone hazard rates. Several statistical distributions exist for modeling lifetime data. The Rama distribution is used for 

modeling lifetime data in biomedical and engineering.  The Rama distribution is specially used for lifetime data with a monotone 

hazard rate. However, in practice, the Rama distribution cannot be used to appropriately model with no-monotone hazard rates. 

The Rama distribution undergoes several generalizations. Berhane Abebe, Mussie Tesfay, et al. [3] proposed a two-parameter 
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Rama distribution with properties and applied it to real-life data. Rama-Kamlesh distribution with properties and applications was 

obtained by Shukla and Shanker [4]. Extended Rama Distribution was suggested by Alhyasat, Ibrahim et al. [5]. The model was 

obtained by using a concept sum of two independent random variables. In this case, both the variables follows the Rama distribution 

on the interval  (0 , ∞). Generalized weighted Rama distribution was proposed by Samuel, John et al. [6] with properties and 

application in medical sciences. A two-parameter weighted Rama distribution was suggested by Eyob and Shanker [7] for a purpose 

to model data that represents a tensile strength of carbon fibers. Inverted power Rama distribution was introduced by Osuji, Samuel 

et al. [8]. Exponentiated Rama distribution was introduced by Kelechi et al. [9] for modeling the data that represents the tensile 

strength of 100 carbon fibres. The model was obtained by using the exponentiated model which was obtained by Mudholkar and 

Srivastava [10].Alpha power transformed Frechet distribution was introduced by Suleman et al. [11] for modeling real life data 

sets. The authors discussed some of the statistical properties of the distribution such as quantile function, moments, mean residual 

life, generating function, entropy, stochastic ordering, etc. The method of Maximum likelihood estimation is used for estimating 

the parameters of the distribution. Further, most of the work has been done on the alpha power transformed family of distributions 

namely, alpha power transformed Power Lindley was suggested by Hassan. et al.[12], alpha power transformed Lindley was 

introduced by Ghosh [13], alpha power transformed Inverse Power Lindley was obtained by Kumar [14], alpha power transformed 

Quasi Lindley suggested by Patrick and Harrison [15], alpha power transformed Weibull was proposed by Golam Kibria [16], 

alpha power transformed Pareto was introduced by  Sakthivel, et al. [17], alpha power transformed extended exponential obtained 

by Hassan et al. [18], alpha power transformed Weibull was suggested by Nassar, et al. [19], Alpha power transformed Aradhana 

distribution was introduced by Maryam and Kannan [20] for modeling a real life time data. Some properties of the model were 

investigated. The maximum likelihood estimation was employed for parameter estimation. Alpha power transformed Garima 

distribution was proposed by Maryam and Kannan [21] with application to real-life data. Some properties of the model were 

investigated. These including survival function, hazard rate, moments, entropy, order statistics etc. The maximum likelihood 

estimation and least square estimation was investigated for the estimation of parameters, Alpha power transformed  Inverse Lomax 

was proposed by Zein-Eldin and Elsehety [22] providing different methods for the estimation of parameters and so on.  

  The cumulative distribution function and probability density function of the APT family of distributions as 
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The purpose of this research is to implement a new generalization of the Rama distribution that addresses the shortcomings of the 

existing distributions in terms of lifetime data modeling. This article is organized in the following sections; in section 2, the alpha 

power transformed (APTR) Rama distribution is introduced. Reliability properties of the model are studied in section 3. Various 

statistical properties such as moments, order statistics, entropy etc. are studied in section 4. In section 5, the model parameters were 

investigated with the method of maximum likelihood estimation. The application of the proposed distribution is illustrated with 

the help of two real life-data sets in section 6. The conclusions are given in section 7 respectively. 

3. PROPOSED MODEL 

The probability density function of the model with two parameters θ and α, can be obtained by using (1) and (2) of the Rama 

distribution in the model (3), proposed by Mahdavi and Kundu [1]. 
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The cumulative distribution function of the proposed model as 
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The figure 1 and figure 2 are pdf and cdf of the proposed model. 

 

Figure 1 Pdf of Alpha Power Rama Distribution 

 

Figure 2 Cdf of Alpha Power Rama Distribution 



International Journal of Emerging Technologies in Engineering Research (IJETER)   

Volume 9, Issue 9, September (2021)                                                                         

  

 

 

ISSN: 2454-6410                                              ©EverScience Publications                            4 

     

4. RELIABILITY PROPERTIES OF THE MODEL 

In this section, we discuss the survival function and failure rate of the proposed model. 

The survival function or reliability function of the model is 
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The failure rate of the model is 
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The figure 3 and figure 4 survival function and failure rate model for different values of the parameters (θ,  α). 

 

Figure 3 Survival Plot of Alpha Power Rama Distribution 

 

Figure 4a Failure Rate of Alpha Power Rama Distribution 
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Figure 4b Failure Rate of Alpha Power Rama Distribution 

From the figure 4a and 4b, the behavior of the hazard function is decreasing-increasing-decreasing and Left-Skewed for the 

parametric values  𝜃 > 1, 𝛼 > 1 and for  𝜃 < 1, 𝛼 > 1 it is Right -Skewed for increasing the value of parameter𝛼. The hazard 

function is decreasing for 𝜃 > 1, 𝛼 < 1 . 

5. STATISTICAL PROPERTIES OF THE MODEL 

5.1   Moments 

Let 𝑌 denotes the random variable follows Alpha Power Transformed Rama distribution with parameters θ, α, then the 𝑛𝑡ℎ order 

moment 𝐸(𝑌𝑛) of Alpha Power Transformed Rama distribution can be obtained as  
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Substituting the Equation (5) in the Equation (9), we obtain the 𝑛𝑡ℎ order moment of Alpha Power Rama distribution as 
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 Using the power series expansion,  
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The Equation (10) becomes, 
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Now applying binomial expansion to equation (11),   
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Thus, the 𝑛𝑡ℎ order moment of Alpha Power Rama distribution can be obtained as 
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Letting  𝑛 = 1 in Equation (12) we get first moment of Alpha Power Rama distribution which is given by 
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Second moment of the Alpha Power Rama distribution is obtained by putting the value of 𝑛 = 2 in Equation (12) as 
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Similarly, we can obtain the third, fourth and so on, moments of the distribution. 

5.2   Generating Function 

The moment generating function of the Alpha Power Rama distribution can be obtained as  
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Similarly, the characteristic function of Alpha Power Transformed Rama distribution can be obtained as 
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6. ENTROPY 

Entropy provides an outstanding tool to compute the amount of information or uncertainty contained in a random observation 

concerning its parent distribution. A large value of entropy concludes the more uncertainty in the data. 

6.1   Renyi Entropy 

The concept of Renyi entropy was developed by Alfred Renyi [23] to measure the randomness, diversity, uncertainty of a system. 

The Renyi entropy of order 𝛿 is defined by 

𝑅(𝛿) =
1

1−𝛿
𝑙𝑜𝑔 ∫ 𝑓𝛿(𝑦)

∞

0
𝑑𝑦,   𝛿 > 0,   𝛿 ≠ 1                                                                                                                      (14)                                                                           

The renyi entropy of Alpha Power Rama distribution can be obtained by using (5) in equation (14), 
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On simplification, we obtain the renyi entropy of the distribution. 
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6.2   Tsallis Entropy 

Tsallis entropy [24] for a continuous random variable  𝑌 is defined as  
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The Tsallis entropy of Alpha Power Rama distribution can be obtained by using (5) in equation (15) as  
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Similarly, on simplification we obtain the Tsallis entropy of proposed model. 



International Journal of Emerging Technologies in Engineering Research (IJETER)   

Volume 9, Issue 9, September (2021)                                                                         

  

 

 

ISSN: 2454-6410                                              ©EverScience Publications                            8 

     

 
  

















































 








































































 )33(

4

3
0 0 0 0 0 0 )(

)133(
32)1(

6

1

1

log

!

log
1

1

1
uvnt

uvuvs
t

r s t u v n

r

s

vunt

rnv

u

u

t

t

s

s

r
S















 

7. BONFERRONI AND LORENZ CURVE 

The Bonferroni [25] and Lorenz [26] curve have wide range of applicability in various fields like economics, reliability, medicine, 

demography etc. The Bonferroni curve can be obtained as 
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and    𝑞 = 𝐹−1(𝑝) 

Benforreni curve of the Alpha Power Rama distribution can be obtained as 

dyeyy
p

pB

ye
yyy

y

q 





 

























































 

6

63
11

3

3

4

01

3

2233

)1(
61

log1
)(

 

Again, using the power series expansion,  
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On simplification, we get, 
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 Similarly, the Lorenz curve can be obtained as 
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8. ORDER STATISTICS 

Let   𝑦1,𝑦2,𝑦3, … , 𝑦𝑛 be the random sample from population with pdf  𝑓𝐴𝑃𝑅 and cdf  𝐹𝐴𝑃𝑅. 
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Inserting Equation (5) and (6) in Equation (16), the pdf of 𝑟𝑡ℎ order statistic 𝑌(𝑟) of the Alpha Power Rama distribution is given by 
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Therefore, the probability density function of the higher order statistic 𝑌(𝑛) can be obtained as 
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The probability density function of the first order statistic 𝑌(1) can be obtained as 
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9. PARAMETER ESTIMATION 

9.1   Maximum Likelihood Estimation 

Let  nyyyy .......,, 321   be a random sample from Alpha Power Rama distribution with parameters (α, θ), then the likelihood function 

of the distribution is 

  



International Journal of Emerging Technologies in Engineering Research (IJETER)   

Volume 9, Issue 9, September (2021)                                                                         

  

 

 

ISSN: 2454-6410                                              ©EverScience Publications                            10 

     

 




































































n

i

e
yyy

y
i

iyiii

ieyyL

1

6

63
11

3

3

4 3

2233

1
61

log
),,(







 







                                                          (17)             

Taking logarithm on both sides to Equation (17), thus we get log likelihood function, 
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Differentiating the Equation (18), with respect to parameters (θ, α), to get the MLE’s of the parameter. 
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The system of nonlinear equations is extremely difficult to solve algebraically due to the complicated form of the equations (19) 

and equation (20). As a result, we estimate the parameters using R software [27]. 

9.2   Simulation Study                                                                                                                                  

In this section, we study the performance of ML estimators for different sample sizes (𝑛 =100, 200, 300,400, 500) and parameter 

set I ( 2. 2, 1.4), set II ( 2.6, 0.2), set III ( 0.8, 1.8). We have employed the inverse cdf technique for data simulation for Alpha 

power Rama distribution using R software. The process was repeated 500 times for the calculation of bias. Variance and MSE. For 

different values of parameters of Alpha power Rama distribution, the decreasing trend is being observed in average bias, variance 

and MSE as we increase the sample size. Hence the performance of ML estimators is quoted well, consistent in the case of Alpha 

power Rama distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

Sample size n  Bias (α) Variance (α) MSE (α) Bias (θ) Variance    (θ) MSE(θ) 

100 0.269375 2.706793 2.779356 -0.01073 0.02708 0.027198 

200 -0.04248 0.943338 0.945143 0.005452 0.00451 0.004538 

300 0.061723 2.027454 2.031264 -0.03224 0.01351 0.014544 

400 -0.00876 0.967741 0.967817 -0.01624 0.00479 0.005058 

500 -0.09409 0.714873 0.723725 -0.02747 .006281 0.007035 

 

100 0.334714 1.970493 2.082527 0.002665 0.00027 0.000274 

200 0.258713 2.337195 2.404127 -0.00115 0.00031 0.000309 
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Table 1: Average Bias, Variance. ML Estimates of Different Sample Size 

10. ILLUSTRATION FOR VALIDATION OF ALPHA POWER TRANSFORMED RAMA DISTRIBUTION 

In this section, the Alpha Power Transformed Rama distribution is validated by fitting the real lifetime data sets to it and the model 

is compared to Erlang Truncated Exponential Distribution, Exponential and Length Biased Power Lindley Distribution. 

Data Set 1 

The first data was studied by Bader and Priest [28] is the tensile strength of 69 carbon fibres under tension at gauge lengths of 

20mm. 

1.314, 1.479, 1.552,1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 

2.253, 2.274, 2.301, 2.301, 3.433, 3.585, 3.585, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511,2.514, 2.535, 2.554, 

1.312, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.270, 2.272, 2.770,2.773, 2.800, 1.700, 1.803, 2.809, 

2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128,3.233. 

Data Set 2 

Smith and Naylor [29], Bourguignon et al. [30] took the data set and fitted it to the Weibull G family. The data collection reflects 

the power of 63 glass fibres with a diameter of 1.5 cm. The data set represents the strength of 63 of 1.5 cm glass fiber. 

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 

1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66,  1.67, 1.68, 

1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. 

The validation of the distributions are compared by using the model selection criteria such as AIC (Akaike Information Criterion), 

AICC (Corrected Akaike Information Criterion) and BIC (Bayesian Information Criterion). The better distribution corresponds to 

lesser AIC, AICC and BIC values. 

LpAIC log22 
,   

LnpBIC log2log 
,  

)1(

)1(2






pn

pp
AICAICC  

Where, ‘p’ is the number of parameters in the statistical model, ‘n’ is the sample size and L is the maximized value of the log-

likelihood function. 

 

 

 

300 -0.21349 2.650690 2.696267 -0.00603 0.00028 0.000312 

400 -0.12148 1.740648 1.755407 -0.00402 0.00013 0.000148 

500 0.219093 0.879471 0.927472 0.002039 0.00006 0.000068 

 

100 0.502717 0.408603 0.661328 0.097892 0.04659 0.056169 

200 0.214119 0.265194 0.311041 0.000847 0.01556 0.015563 

300 -0.00949 0.235854 0.235944 -0.02095 0.01828 0.018714 

400 -0.08384 0.065447 0.072476 -0.04197 0.00711 0.008873 

500 -0.05378 0.144299 0.147191 -0.04728 0.02256 0.024798 
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Table 2:  Goodness of fit criteria

As compared to other distributions, the Alpha Power Transformed Rama distribution has the lowest AIC, BIC, and AICC values. 

As a result, we can infer that the Alpha Power Rama distribution suits the data better than the Exponential, Erlang Truncated 

Exponential distribution and Length biased power Lindley distribution. 

11. CONCLUSION 

The authors of this paper proposed a new generalization of the Rama distribution based on the APT model provided by Mahdavi 

and Kundu. The model is referred to as Alpha Power Transformed Rama distribution. The authors investigate some of the properties 

of the proposed distribution. The validity of the Alpha Power Transformed Rama distribution is demonstrated by fitting real-life 

data sets, and it is found that the Alpha Power Transformed Rama distribution suits lifetime data better than the Erlang Truncated 

Exponential Distribution, Exponential, and Length Biased Power Lindley Distribution. 
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